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Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships be-
tween the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural sys-
tems. Unfortunately, in many areas existing fire occurrence datasets are known to be incomplete.
Consequently, the need to systematically collect burned area information has been recognized by the United Na-
tions Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which
have both called for the production of essential climate variables (ECVs), including information about burned
area. In this paper, we present an algorithm that identifies burned areas in dense time-series of Landsat data to
produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm uses gradient
boosted regressionmodels to generate burn probability surfaces using band values and spectral indices from in-
dividual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference pre-
dictors. Burn classifications are generated from the burn probability surfaces using pixel-level thresholding in
combination with a region growing process. The algorithm can be applied anywhere Landsat and training data
are available. For this study, BAECV products were generated for the conterminous United States from 1984
through 2015. These products consist of pixel-level burn probabilities for each Landsat scene, in addition to, an-
nual composites including: the maximum burn probability and a burn classification. We compared the BAECV
burn classification products to the existing Global Fire Emissions Database (GFED; 1997–2015) and Monitoring
Trends in Burn Severity (MTBS; 1984–2013) data.We found that the BAECV products mapped 36%more burned
area than the GFED and 116% more burned area than MTBS. Differences between the BAECV products and the
GFED were especially high in the West and East where the BAECV products mapped 32% and 88% more burned
area, respectively. However, the BAECV products found less burned area than the GFED in regions with frequent
agricultural fires. Compared to the MTBS data, the BAECV products identified 31%more burned area in theWest,
312% more in the Great Plains, and 233% more in the East. Most pixels in the MTBS data were detected by the
BAECV, regardless of burn severity. The BAECV products document patterns of fire similar to those in the GFED
but also showed patterns of fire that are not well characterized by the existing MTBS data. We anticipate the
BAECV products will be useful to studies that seek to understand past patterns of fire occurrence, the drivers
that created them, and the impacts fires have on natural and human systems.
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1. Introduction

Accurate and complete data on fire locations and burned areas (pre-
scribed and wild) are needed for a variety of applications including
.

quantifying trends and patterns of fire occurrence (Abatzoglou and
Williams, 2016; Dennison et al., 2014; Giglio et al., 2013; Westerling et
al., 2006); characterizing drivers of past fire occurrence and projecting fu-
ture potential patterns of fires (Bachelet et al., 2003; Hawbaker et al.,
2013; Krawchuk et al., 2009; Parisien and Moritz, 2009; Riley et al.,
2013); and assessing the impacts of fires on a range of natural and social
systems (French et al., 2014; Shakesby and Doerr, 2006; van der Werf et
al., 2010; Williams et al., 2016). Many of these applications require
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consistent fire data collected over long time periods to determine if
changes in fire occurrence and fire impacts are related to shifts in climate,
land-use/land-cover change, policy and management, and other drivers.

Recognizing the importance of fires, especially for understanding cli-
mate change and its impacts, the Global Climate Observing System
(GCOS) included fire disturbance, specifically burned area, in their list
of 13 terrestrial essential climate variables (ECVs) that are technically
and economically feasible for systematic observation (Food and
Agriculture Organization of the United Nations, 2008). These are being
developed in response to calls from the UnitedNations Framework Con-
vention on Climate Change, Intergovernmental Panel on Climate
Change (Global Climate Observing System, 2004), as well as calls from
the European Space Agency's Climate Change Initiative, theNational Re-
search Council, and the Landsat Science Team to systematically observe
atmosphere, ocean, and land characteristics (Hollmann et al., 2013;
National Research Council, 2001; Roy et al., 2014; Wulder et al., 2012).

Remote sensing is critical to the development of ECVs because satel-
lite images and the products derived from them can provide a basis for
long-term systematic data collection tomonitor changes in the land sur-
face that either influence or are influenced by climate.Monitoring active
fires and burned areas, in particular, is feasible with remote sensing be-
cause of the thermal and spectral changes induced by fires. Coarse-res-
olution sensors equipped with spectral and thermal bands, such as the
Advanced Very High Resolution Radiometer (AVHRR), can effectively
map subpixel heat sources (Dozier, 1981; Matson and Dozier, 1981)
and applications for spatially-extensive active fire detection with
AVHRR data were realized (Flannigan and Vonder Haar, 1986;
Malingreau et al., 1985; Matson et al., 1987) and extended to other sen-
sors such as the Geostationary Operational Environmental Satellite Vis-
ible Infrared Spin Scan Radiometer Atmospheric Sounder (Prins and
Menzel, 1992; Prins andMenzel, 1994), theDefenseMeteorological Sat-
ellite Program Operational Linescan System (Elvidge et al., 1996), the
Moderate Resolution Imaging Spectroradiometer (MODIS) (Giglio et
al., 2003), the Visible Infrared Imaging Radiometer Suite (VIIRS)
(Giglio et al., 2000), and even moderate-resolution sensors like the
Landsat Thermal Infrared Sensor (Schroeder et al., 2015). In addition
to identifying actively burning fires, spectral changes visible in the tem-
porally rich data provided by coarse-resolution sensors allowed for
burned area detection, although the approaches varied depending on
the spectral bands specific to individual sensors (Eva and Lambin,
1998; Kasischke and French, 1995; Roy et al., 2005). Other approaches
combined spectral change analysis with hot spot detection, to help dis-
tinguish burned areas from other types of change (Alonso-Canas and
Chuvieco, 2015; Fraser et al., 2000; Giglio et al., 2009; Li et al., 1997).
Many of the existing coarse resolution global active fire and burned
area algorithms and products provide the types of data identified in
the GCOS ECV definitions (Alonso-Canas and Chuvieco, 2015; Global
Climate Observing System, 2004) and have been combined to produce
operational products monitoring burned areas and emissions such as
the Global Fire Emissions Database (GFED; Giglio et al., 2013;
Randerson et al., 2012; van der Werf et al., 2010).

In spite of the impressive efforts made to monitor fire activity and
burned area with coarse-resolution sensors, many shortcomings re-
main. Fires obscured by clouds, fires with short-lived thermal signa-
tures, and small fires may not be identified (Hawbaker et al., 2008;
Morisette et al., 2005; Schroeder et al., 2008). Detection errors remain
high for many global coarse-resolution products; Padilla et al. (2015)
found that commission errors for burned area ranged between 42%
and 94%, and omission errors for burned area ranged between 68%
and 93%, depending on the sensor used. Additionally, the short time se-
ries provided by coarse-resolution sensors (other than AVHRR) are in-
adequate when trying to quantify relationships between patterns of
climate and fire occurrence because they span a limited range of climate
variability, potentially over emphasizing the importance of extreme
years (Hawbaker et al., 2013; Hawbaker and Zhu, 2012; Westerling et
al., 2011).
Moderate-resolution sensors such as the LandsatMultispectral Scan-
ner System (MSS) and Thematic Mapper (TM) have also been used to
remotely sense burned areas. Initial efforts used Landsat pre- and
post-fire images to map pre-fire vegetation, burned area extent, and se-
verity (Chuvieco and Congalton, 1988; Hall et al., 1980; Jakubauskas et
al., 1990; Koutsias and Karteris, 1998). Subsequent efforts focused on
identifying burned areas within single scenes (Koutsias and Karteris,
2000; Kushla and Ripple, 1998), extracting within-fire heterogeneity,
severity, mortality, and carbon loss (Michalek et al., 2000; Miller and
Yool, 2002; Patterson and Yool, 1998; Rogan and Yool, 2001). The mod-
erate resolution of Landsat sensors also allowed for the development of
burned area detection algorithms using spatial contagion metrics and
region-growing approaches to incorporate the spatial patterns of spec-
tral reflectance among neighboring pixels, in addition to the pixel-
level spectral data to identify burned areas; helping to reduce omission
errors (Bastarrika et al., 2011; Chuvieco et al., 2002; Goodwin and
Collett, 2014; Koutsias, 2003; Stroppiana et al., 2012). The results of
these approaches provide data products with the spatial and temporal
resolution relevant to fire ecology and management and have laid the
foundation for operational programs monitoring patterns of severity
and area burned by large fires in the United States (Eidenshink et al.,
2007).

Since the opening of the Landsat archive (Wulder et al., 2012),
change detection approaches for moderate-resolution data have
evolved to incorporate the temporal depth of the data available in the
Landsat archive by subdividing annual time series of spectral responses
into piecewise segments, and then using the changes between seg-
ments and characteristics of segments to delineate disturbances, such
as the Vegetation Change Tracker (VCT; Huang et al., 2010) and the
Landsat-based detection of Trends in Disturbance and Recovery
(LandTrendr; Kennedy et al., 2010) algorithms.More recent approaches
have analyzed the time series as a whole (Hansen et al., 2014) or
decomposed dense time series data to distinguish seasonality from
long-term trends for change detection using both MODIS (Verbesselt
et al., 2010) and Landsat data (Brooks et al., 2014; Zhu and Woodcock,
2014b). These methods detect change, but require additional attribu-
tion to characterize the specific type of change (Kennedy et al., 2015;
Liang et al., 2014; Zhao et al., 2015). The methods cited above have
largely focused on detection of stand-replacing forest disturbances, or
in the case of fires, those that result in long-lasting changes in spectral
reflectance visible in annual Landsat time series stacks (e.g. stand-re-
placing forest fires, Huang et al., 2010; Kennedy et al., 2010).

Fire-specific change detection algorithmsmaking use of the full tem-
poral depth of the Landsat archive are also emerging. For example,
Goodwin and Collett (2014) combined a change-detection algorithm
with a region-growing algorithm to identify contiguous areas of change
and then classified which areas of change were caused by fires in
Queensland Australia, using all available Landsat data from 1986
through 2013. Similarly, Boschetti et al. (2015) usedweekly composites
of Landsat 7 data from 2002 to identify areas with spectral change and
then combined them with MODIS active fire data to separate burned
areas in predominantly forested regions in the western U.S. These two
studies demonstrated that burned areas can be mapped with automat-
ed approaches over large spatial extents using moderate-resolution
data. However, the need for consistently collected burned area data cov-
ering large spatial (national, continental, and global scales) and tempo-
ral (30 or more years) extents has not been met.

In this paper, we present an algorithm to identify burned areas in
Landsat satellite images, compare its outputs with existing burned
area dataset, and discuss how those outputs or products provide novel
information about patterns of fire occurrence in the conterminous Unit-
ed States (CONUS). Thefirst objective of this studywas to develop a new
algorithm to identify burned areas in satellite imagery; henceforth re-
ferred to as the Landsat Burned Area Essential Climate Variable
(BAECV) algorithm. The second objective of this study was to produce
a publicly available Landsat-based burned area product from 1984
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through 2015 for the CONUS. To do this, we applied the BAECV algo-
rithm to the CONUS. To demonstrate that the BAECV products provide
new information, we compared them with the GFED and MTBS burned
area data.

2. Methods

2.1. Study area and Landsat scene selection

We selected the CONUS as our study area because it has a large
amount of both Landsat data and fire occurrence data available. For
any given area, a single Landsat satellite can acquire 23 observations
per year; with two satellites operating simultaneously this increases
to 46 observations per year. To train and evaluate our approach, we se-
lected 38 Landsat World-Reference System 2 (WRS-2) path and rows
(path/rows) across the CONUS (Fig. 1). Path/row locationswere spatial-
ly distributed in order to capture major ecosystems and fire regimes,
largely based on the U.S. Environmental Protection Agency's Level 2
and 3 Ecoregions (Omernik and Griffith, 2014). However, we also in-
cluded scenes where we expected burned area detection with Landsat
data to be especially challenging, such as path and rows in the Great
Plains and semi-arid regions of the Southwest.

We developed the BAECV algorithm specifically to operate on
Landsat imagery, since these data span a long time series (1972–pres-
ent, depending on the sensor), are freely available, and have moderate
spatial resolution (Wulder et al., 2012). Datasets used in this analysis in-
cluded Landsat 4 Thematic Mapper (TM; 1982–1993), Landsat 5 TM
(1984–2013), Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
both with the Scan Line Corrector (SLC) on (1999–2003) and the SLC
off (2003–2015). Using the U.S. Geological Survey EarthExplorer
website (earthexplorer.usgs.gov), we selected all available scenes with
(1) precision and terrain correction (Level 1T), (2) cloud cover less
than or equal to 80%, and (3) georeferencing root mean square error
≤ 10 m. The scenes found in EarthExplorer were then submitted to the
Earth Resources Observation and Science (EROS) Center Science Pro-
cessing Architecture (ESPA) Ordering Interface (espa.cr.usgs.gov) for
bulk processing. The Landsat Ecosystem Disturbance Adaptive Process-
ing System generated surface reflectance (Masek et al., 2006) and the
source metadata were ordered through ESPA. This resulted in 22,855
Landsat scenes for training and evaluation.

2.2. Landsat Burned Area Essential Climate Variable algorithm

The BAECV algorithm is a supervised approach that uses gradient
boosted regression models to estimate the probability that each pixel
within a Landsat image was burned. The burn probabilities are then
composited to per-pixel maximum annual burn probabilities, followed
by a thresholding and segmentation process to generate binary annual
Fig. 1. Study area showing theWorld Reference System version 2 (WRS-2) path/rowswhere tra
burn classification images. Before describing the algorithm, we provide
details about the predictor and response variables derived from Landsat
data and other sources, and the selection of sample points used for
training and testing the algorithm.

2.2.1. Fire occurrence data
The MTBS data (Eidenshink et al., 2007) were the primary source of

observed burned areas used for training and evaluating the results of
the BAECV algorithm. These data include large fires (≥2 km2 in the east-
ern U.S. and ≥4 km2 in the western U.S.). We selected theMTBS dataset
for use in this analysis because it is the most comprehensive spatially-
explicit burned area dataset for the U.S. Even though MTBS does not
map all fires, each fire in the dataset has been visually interpreted by a
trained analyst. Data for each MTBS fire consist of a fire perimeter poly-
gon and a categorical burn severity raster layer derived from either a
single post-fire Landsat image or a pair of pre- and post-fire Landsat im-
ages. The MTBS fires used in this study span the Landsat 4, 5, and 7
epochs (1984–2013); and included approximately 17,637 fires that
burned N445,000 km2 across the CONUS. For this analysis, the MTBS
fire perimeter polygons and severity rasters were cropped to the 38
training path/row polygons before additional processing; resulting in
our training and testing data containing 4493 individual fires burning
142,000 km2.

2.2.2. Predictor variables
The BAECV algorithm makes use of three types of predictor vari-

ables: (1) land surface conditions in the scene or image of interest; (2)
reference conditions that characterize the land surface prior to distur-
bances visible in the scene of interest; and (3) changemetrics quantify-
ing the magnitude of change between the reference conditions and the
scene (Table 1). Scene-level predictors used by the BAECV algorithm in-
cluded the individual Landsat bands in addition to a number of spectral
indices. The reference variables represented pre-fire surface conditions
using three-year lagged means and standard deviations for each of the
single-scene predictor variables. The change predictor variables includ-
ed absolute and relative difference between the values of a given predic-
tor in a Landsat scene (e.g. NBR) and its corresponding reference
predictor (e.g. the 3-year laggedmean of NBR). Additional predictors in-
cluded the Landsat sensor number (e.g. 4, 5, or 7) and the U.S. Environ-
mental Protection Agency's Level I ecoregions (Omernik and Griffith,
2014). Pixels flagged as cloudy, water, or snow/ice by the function of
mask algorithm (FMask) (Zhu and Woodcock, 2014a) were excluded
from calculations.

2.2.3. Sampling points for training and testing
To generate a sample of training and testing data points,we random-

ly selected points within the polygon outlining the extent of eachWRS-
2 path and row (Fig. 1). To sample burned areas, we randomly selected
ining datawere collected for the Landsat Burned Area Essential Climate Variable algorithm.

http://earthexplorer.usgs.gov/
http://espa.cr.usgs.gov/


Table 1
Landsat Thematic Mapper and Enhanced Thematic Mapper Plus derived predictors used in the gradient boosted regression models. NIR: near infrared; SMIR: shortwavemiddle infrared;
LMIR: longwave middle infrared.

Variable Abbreviation Formula Reference

Blue: 0.45–0.52 μm band1
Green: 0.52–0.60 μm band2
Red: 0.63–0.69 μm band3
NIR: 0.76–0.90 μma band4
SMIR: 1.55–1.75 μm band5
Thermal: 10.40–12.50 μm band6
LMIR: 2.08–2.35 μmb band7
Normalized difference vegetation index NDVI (band4 − band3) / (band4 + band3) Tucker, 1979
Normalized difference moisture index NDMI (band4 − band5) / (band4 + band5) Gao, 1996
Normalized difference wetness index NDWI (band2 − band4) / (band2 + band4) McFeeters, 1996
Tasseled cap greenness TC greenness (−0.1603 ∗ band1) + (−0.2819 ∗ band2) + (−0.4934 ∗ band3) +

(0.7940 ∗ band4) + (0.0002 ∗ band5) + (−0.1446 ∗ band7)
Crist, 1985

Tasseled cap wetness TC wetness (0.0315 ∗ band1) + (0.2021 ∗ band2) + (0.3102 ∗ band3) +
(0.1594 ∗ band4) + (0.6806 ∗ band5) + (−0.6109 ∗ band7)

Normalized burn ratio NBR (band4 − band7) / (band4 + band7) López García and Caselles, 1991;
Key and Benson, 2006Normalized burn ratio 2 NRB2 (band5 − band7) / (band5 + band7)

3-Year lagged mean and standard deviations for each spectral index.
Absolute and relative change from 3-year lagged mean for each spectral index.

a 0.77–0.90 μm for ETM+.
b 2.09–2.35 μm for ETM+.
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up to 2000 point locations within MTBS perimeters in each path and
row. For this analysis, we only considered MTBS points classified as
low, moderate, or high burn severity to be burned areas. The date of
the fire was defined by the MTBS perimeters and was assigned to each
point. To sample unburned areas, we also randomly selected an equal
number of point locations outside of theMTBS perimeters.We specified
a minimum distance of 30 m between points to ensure that individual
pixel locations were only sampled once. At each point location, and for
each image in the time series, we collected the values for the ecoregion,
sensor id (4, 5, or 7), and each of the single-scene predictors, 3-year
lagged predictors, and absolute and relative change between the sin-
gle-scene predictors and the 3-year lagged predictors (Table 1). These
data were split into training and testing groups based on years. Six
years were retained for testing and validation (1988, 1993, 1998,
2003, 2008, and 2013). The remaining 24 years of data were used for
training. After the training and testing split, all points labeled as burned
from the MTBS data were retained and an equally-sized sample of un-
burned points was randomly selected.

2.2.4. Burned area probability mapping
The first step of the BAECV algorithm is to estimate the probability

that each pixel in a Landsat image had burned. To do this, we first fit,
and later made predictions with a gradient boosted regression model
(GBRM; Hastie et al., 2009) which uses a sequence of simple classifica-
tion and regression tree (CART) models (Breiman et al., 1984). Classifi-
cation and regression trees have been used extensively in remote
sensing (Chan et al., 2001; Friedl and Brodley, 1997; Rogan et al.,
2002) because they havemany advantages over other types of statistical
models, including: the ability to handle both categorical and continuous
variables; allow for missing data; include variable interactions in
models with more than one split; make no assumptions about the
model structure or distribution of predictor variables; rarely select un-
important variables; do not degrade predictive accuracy when highly
correlated predictors are included; and produce easily interpreted re-
sults (Hastie et al., 2009). However, CART models also have a number
of disadvantages including: instability, or small changes in the input
data resulting in large changes in splitting thresholds; smooth functions
or relationships between predictor and response variables may not be
well characterized; and over-fitting may occur when large trees are
not pruned. The shortcomings over CART models have been
circumvented byusing ensemblemethods such as bagging and boosting
(Hastie et al., 2009). The bagging approach is used by random forests
which fit many individual CART models, sampling a subset of the data
for each model, and averaging their results – often out performing indi-
vidual CARTmodels. Theboosting approach, as implemented byGBRMs,
is similar to random forests; however, the CART models are fit in a se-
quence. There is also a learning component; the observations used to
fit each CART model are weighted by the residuals of the previous
CART model. The resulting GBRM is a committee of learners that often
has higher predictive accuracy than that of individual CART, and ran-
dom forest models for binary classification problems (Hastie et al.,
2009). All 3 types of modeling approaches: CART, random forests, and
GBRMs have been used for a wide range of remote sensing applications
(Coulston et al., 2012; Hansen et al., 2014; Homer et al., 2004; Liu, 2016;
Merentitis and Debes, 2015; Powell et al., 2010; Schneider, 2012;
Thompson et al., 2016).

Training a GBRM requires specification of a number of parameters
that control the model structure. These parameters include the (1)
number of trees, (2) number of splits per tree, and (3) learning rate be-
tween successive trees (Hastie et al., 2009). Individual trees are fit in se-
quence and when fitting the tree, the learning rate specifies the weight
to apply to prediction errors from the previous tree in the sequence. In
practice, setting these three parameters involves fitting models for a
range of values and then evaluating tradeoffs amongmodel complexity,
accuracy of predictions, and computation time.

We selected a range of values for the learning rate (0.1, 0.05, and
0.01) and the number of splits per tree (1, 3, and 5). For each combina-
tion of learning rate and number of splits per tree, we fit GBRMs with
our training data using 5000 trees. After initial model fits, the number
of trees used in each of the GBRMs was systematically reduced by eval-
uating changes in the loss metric for the test data as a function of the
tree's number in the sequence trees. The objective here was to deter-
mine the smallest number of trees in the sequence needed to achieve
themaximum value of an accuracy metric. To compare predictive accu-
racy among the final GBRMs, we calculated the area under the curve
(AUC) of receiver-operating characteristic plots metric using the test
data. After fitting the GBRMs, we selected the individual GBRM that
had the highest accuracy with the lowest number of trees (to reduce
computation time). The final GBRM was used to generate pixel-level
burn probability images for all images in the entire time-series of
Landsat scenes, whichwere subsequently used to generate annual com-
posites of maximum burn probability.

2.2.5. Burned area classification
The next step in our approach was to threshold the annual compos-

ites of maximum burn probability to produce burn classifications, or
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binary images specifying which pixels were burned and not burned.
Through visual analysis, we observed that burn probability images and
annual composites often had patches of pixels with very-high burn
probabilities, and that those patches were often connected by pixels
with slightly lower, but still high burn probabilities within MTBS fire
perimeters and much lower burn probabilities outside of the MTBS
fire perimeters. To capture this observed pattern, we implemented a re-
gion-growing method similar to approaches taken in other studies
(Bastarrika et al., 2011; Chuvieco et al., 2002; Goodwin and Collett,
2014; Koutsias, 2003; Stroppiana et al., 2012). We first identified
seeds for potential burned area regions by thresholding the annualmax-
imum burn probability composites into preliminary binary burned
patches; this threshold value is referred to as the ‘seed probability
threshold’. Next, burned area patches below a minimum size were re-
moved, specified using the ‘seed size threshold’. Third, neighboring
pixels with burn probabilities slightly lower than the seed probability
threshold were added to patches if the neighboring pixels had a burn
probability greater than or equal to the ‘spread probability threshold’.
The third step was completed in an iterative fashion until no additional
neighboring pixels with burn probabilities above the spread probability
threshold could be found. The threshold values we used were 98% for
the seed probability threshold, 45 pixels for the seed size threshold,
and 95% for the spread probability threshold. Once the three thresholds
were set, an annual burned area classification product was generated
for each year from 1984 to 2015.
2.3. Evaluation of algorithm and outputs

In this study, we evaluated the BAECV algorithm and its resulting
products in a number of ways. To assess the algorithm performance,
we examined the relative importance and partial dependence plots of
predictor variables to identify which variables were contributing the
most to the BAECV models and how they related to the probability
that a pixel had burned. Additionally, we examined a number of output
images to assess howwell the BAECV algorithmextracts burned areas in
time-series of Landsat images and to provide illustrative examples of
where the algorithm works well and doesn't work so well.

To evaluate the BAECVproducts,we summarized the percent of 1/4–
degree grid cells burned using the BAECV data, and compared those re-
sults to equivalent summaries from the GFED (version 4.1s) and MTBS
data for CONUS and 3 major regions of the CONUS: West, Great Plains,
and East (Fig. 1).

Wemademore detailed comparisons between the BAECV andMTBS
data because they had the same spatial resolution and nearly same tem-
poral extent. Specifically, we assessed differences in burned area be-
tween BAECV and MTBS products in relation to land cover from 1993
to 2013 (land cover data prior to 1992 were not available). In addition
to quantifying differences between the BAECV and MTBS products
across land cover types, we also assessed what percentage of MTBS
pixelswere notmapped by the BAECV algorithm byMTBS burn severity
class (low, moderate, or high). Finally, we used the BAECV and MTBS
data to compare rates of change in burned area between 10-year incre-
ments (1984–1993; 1994–2003; and 2004–2013).

Data preparation prior to analysis involved combining the BAECV
burn classification mosaics, MTBS annual burn severity mosaics, land
cover from the National Land Cover Database (NLCD) (Fry et al., 2011;
Homer et al., 2007; Homer et al., 2015; Vogelmann et al., 2001), and a
raster delineating the three regions of the CONUS. Because NLCD classi-
fications vary across the different versions, we reassigned them using a
consistent classification scheme (Table 2) prior to analysis. Land cover
classes that are unable or unlikely to burn: open water, perennial ice/
snow, developed, and barren areas were removed. The version of
NLCD data used in the combined dataset was assigned based on year
of the burned area data. For example, the 1992 NLCD data were com-
bined with burned area data from 1992 through 2000.
3. Results

3.1. Algorithm structure and performance

After fitting all possible combinations of GBRM parameters (number
of splits/tree and learning rate),we selected 5 splits/tree and a 0.1 learn-
ing rate as the ‘best’ combination because it had the lowest number of
trees required to reach the maximum value of the accuracy metric, cal-
culated from the test sample (AUC; Tables 3 and 4). Possible AUC values
range between0.0 and1.0 and represents the probability that themodel
is able to correctly identify a burned pixel, given a pair of pixels (1
burned and 1 unburned). Values of 0.5 indicate the model is no better
than a random guess. Model accuracy improves as AUC approaches a
value of 1.0, which would indicate the model is a perfect classifier. Our
GBRMhad an AUC value of 0.89 suggesting that its classification accura-
cy was quite good.

We assessed the relative importance of the predictor variables used
in the final GBRM. We found that the ecoregion, individual Landsat
bands, and the 3-year lagged summary predictors had the greatest rel-
ative importance, while the scene-level spectral indices and change
metrics were less important (Fig. 2). Partial dependence plots showed
that burn probability had a negative relationship with the shortwave
middle infrared (band5) and a positive relationship with the longwave
middle infrared (band7; Fig. 3). These relationships were amplified by
the NBR2 spectral index which had an abrupt drop in burn probability
in the 0.1 to 0.2 range (Fig. 3). The partial dependence plots for the 3-
year lagged mean and standard deviation of NBR2 showed burn proba-
bility had a positive relationship with the 3-year lagged mean of NBR2
and a negative relationship with the 3-year lagged standard deviation
of NBR2. Finally, the difference between NBR2 and the 3-year lagged
mean of NBR2 had a rapidly changing relationship to burn probability,
similar to the NBR2 relationship (Fig. 3).

To determine if the BAECV algorithm was producing reasonable re-
sults, we visually compared the BAECV burn probability and classifica-
tion images with the original Landsat imagery (Fig. 4). The example
for California (Fig. 4a) is an area dominated by grassland and shrubland
with some coniferous forest. It shows that SLC gaps in Landsat 7 data
present some challenges, leaving gaps in the corresponding burn prob-
ability image. However, the SLC gaps are often removed in the annual
burn classification (shown with black outlines) because every image
in the Landsat time series is assessed by the BAECV algorithm.

Fig. 4b shows part of theHinman Fire that occurred in 2002 in north-
ern Colorado. Land cover in this areawas primarily coniferous forest and
shrubland. This example shows that the burn probability image clearly
identifies the burned area, but unburned areas contained some noise.
These were ultimately filtered out by the burn classification process.

Fig. 4c shows an example of burned area detection in grasslands in
eastern Kansas. Spring prescribed fires are frequently used in this region
to promote grass production for cattle grazing. The perennial grasses
and forbs in this area recover quickly after fires and burned areas
might be missed if cloud-free imagery is not available in the spring.

The example for western Wisconsin (Fig. 4d) is located in a diverse
landscape with a mix of deciduous forest, forested wetlands, pasture/
hay, and agriculture land cover types. A clearly visible burned area
was identified from the image shown and additional burned area (de-
lineated by the black line) was identified in later images. In the south-
west corner of this image, a small wetland area was incorrectly
identified as burned, possibly because of changes in surface water
extent.

In theNorth Carolina example (Fig. 4e), an active fire is shown burn-
ing in forested wetlands in the Great Dismal Swamp National Wildlife
Refuge in 2011. Some of the burned area had relatively low probabilities
and this may be in part because the area shown had previously burned
in 2008 and not fully recovered by 2011, or due to the presence of
smoke plumes in some of the images. Within the burn probability im-
ages, some burned areas were incorrectly masked as open water by



Table 2
Values used to standardize the different vintages of the National Land Cover Database (NLCD) to a common set of values.

Original Value NLCD 1992 description NLCD 2001, 2006, and 2011 description Standardized description Standardized value

11 Open water Open water Open water 11
12 Perennial ice/snow Perennial ice/snow Perennial ice/snow 12
21 Developed, open space Developed, open space Developed 20
22 Developed, high intensity Developed, low intensity Developed 20
23 Commercial/industrial/transportation Developed, medium intensity Developed 20
24 Developed, high intensity Developed 20
31 Bare rock/sand/clay Barren Barren 31
32 Quarries/strip mines/gravel pits Barren 31
33 Transitional Shrub/scrub 52
41 Deciduous forest Deciduous forest Forest 40
42 Evergreen forest Evergreen forest Forest 40
43 Mixed forest Mixed forest Forest 40
51 Shrubland Shrub/scrub 52
52 Shrub/scrub Shrub/scrub 52
61 Orchards/vineyards/other Cultivated crops 82
71 Grassland/herbaceous Grassland/herbaceous Grassland/herbaceous 71
81 Pasture/hay Pasture/hay Pasture/hay 81
82 Cultivated crops Cultivated crops Cultivated crops 82
83 Small grains Cultivated crops 82
84 Fallow Pasture/hay 81
85 Urban/recreational grasses Developed 20
90 Woody wetlands Woody wetlands Wetlands 90
91 Woody wetlands Wetlands 90
92 Emergent herbaceous wetlands Wetlands 90
95 Emergent herbaceous wetlands Emergent herbaceous wetlands Wetlands 90
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the FMask algorithm. In all five cases, the BAECV burn probability im-
ages clearly delineate the burned and unburned areas well and provide
confidence that the BAECV algorithm is capable of detecting burned
areas across a wide range of ecosystem types.

An example of the Landsat time series and corresponding BAECV
products in southern Florida is shown in Fig. 5. Numerous burned
areas appear and disappear as biomass is consumed by fires and subse-
quently recovers over time. Some areasweremore clearly delineated in
the burn probability images than others (e.g. Julian dates 43 and 59 vs.
107 and 315). Burned areas were visible in images with some cloud
cover (e.g. Julian date 75, 139, 187, and 315). Actively burning fires in
agricultural areas are visible for Julian dates 299 and 315 and some
burned areas were detected in the agricultural areas in the top of
those images. The final burn classification for 1988 was most likely an
underestimate of burned area as some areas were mapped with low
burn probabilities but were not retained by the thresholding step in
our algorithm.

3.2. Spatial patterns of burned area

We compared the amount of area burned in the BAECV products, the
GFED (version 4.1s; 1997–2015), and MTBS (1984–2013) across the
CONUS and three regions of CONUS: the West, Great Plains, and the
East. Between 1997 and 2015, the BAECV products mapped 36% more
burned area than the GFED (722,887 vs. 532,992 km2; Table 5). The per-
cent of burned area in the BAECV products was nearly equal between
the West (40% of CONUS total) and the East (37%), and somewhat
lower in the Great Plains (23%). In contrast, burned area in the GFED
was primarily in the West (41% of CONUS total), followed by the Great
Plains (32%), and then the East (27%). Differences between the BAECV
and GFED burned area were greatest in the East (BAECV mapped 88%
Table 3
Number of trees for different gradient boosted regressionmodel parameter combinations.

Number of splits/tree Learning rate

0.1 0.05 0.01

1 2000 2500 2000
3 1500 1750 3000
5 750 1500 2250
more than GFED; Table 5) and the West (BAECV mapped 32% more),
and similar in the Great Plains (BAECVmapped 4% less). The spatial pat-
tern of thedifferences between the BAECV andGFED are visible in¼-de-
gree gridded summaries (Fig. 6).

We also compared the BAECV products to the MTBS data (only data
from 1984 to 2013 were used as MTBS data were not available for 2014
and 2015). From 1984 through 2013, a total of 936,057 km2 of burned
area was identified in the BAECV products (Fig. 7). The majority of the
area burnedwas in theWest (39%) andGreat Plains (37%), and a smaller
percentage in the East (24%). Compared to the MTBS data, the BAECV
products mapped 116% more burned area (Table 6; Fig. 7). In the
MTBS data, a greater percentage of the burned area was in the West
(65%), compared to the Great Plains (19%) and the East (16%). Differ-
ences in annual burned area were evident between the two datasets
(Table 6) and especially large in the Great Plains (BAECV mapped
312% more than MTBS) and the East (BAECV mapped 233% more
than MTBS), and slightly lower but still relatively large in the West
(BAECV mapped 31% more than MTBS). The spatial pattern of these
differences is visible in ¼-degree gridded summaries of BAECV and
MTBS burned area, and their differences (Fig. 7).

Across the CONUS, 69% of the burned area in the BAECV products
was not present in the MTBS data (Table 7). The largest amount of
‘new’ burned area from the BAECV algorithm was in the East and the
Great Plains (87% and 83%, respectively). The majority of the burned
area in the MTBS data was mapped in the BAECV products (67% across
CONUS), but with substantial regional variability. The BAECV products
identified burned areas that were also in the MTBS products in the
West andGreat Plainswell, 73% and 69%, respectively, butmissed a sub-
stantial portion (43%) of the MTBS burned area in the East.
Table 4
Areaunder the curve (AUC) of receiver-operating characteristic plots for different gradient
boosted regression model parameter combinations.

Number of splits/tree Learning rate

0.1 0.05 0.01

1 0.83 0.82 0.77
3 0.88 0.88 0.84
5 0.89 0.89 0.89



Fig. 2. Relative importance of individual predictor variables used in the gradient boosted regression model (GBRM). Results shown for GBRM using 5 splits/tree and a 0.1 learning rate.
Bands 1–7: Landsat Thematic Mapper and Enhanced Thematic Mapper Plus bands; NDVI: normalized difference vegetation index; NDMI: normalized difference moisture index;
NDWI: normalized difference wetness index; NBR: normalized burn ratio; NBR2 normalized burn ratio version 2; TC: tasseled cap; st. dev.: standardized deviation.
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Themajority of burned area in the BAECV productswas in grassland/
herbaceous (26%), shrub/scrub (25%), and forest (25%) land-cover clas-
ses. Smaller amounts of burned area were found in agriculture (10%),
pasture/hay (7%), and wetland (6%) land-cover classes. These percent-
ages were different for the MTBS data, which had a larger proportion
of burned area in shrub/scrub (39%) and forest (31%) and a lesser pro-
portion in grassland/herbaceous (21%), agriculture (1%), and pasture
(1%), but a similar amount of wetland burned area (7%). In the West,
burned area was spread across forest, shrub/scrub, and to some extent,
the grassland/herbaceous land-cover classes while burned areas were
primarily in the grassland/herbaceous and agriculture land-cover clas-
ses in the Great Plains, and primarily in the forest and wetland classes
in the East (Fig. 8).
Fig. 3. Partial dependence plots for a subset of predictor variables used in the g
In addition to quantifying differences in burned area between
the BAECV and MTBS products, we also evaluated potential differ-
ences in detection related to fire severity. The BAECV detected the
majority of low (70%), moderate (87%) and high severity (85%)
pixels mapped by MTBS across CONUS (Table 8). The BAECV per-
formed weakest for low severity pixels in the East (46% detection
rate); however, most fire regions showed detection rates of N70%
across the three severity categories indicating that the BAECV
maps most of the pixels mapped by the MTBS product (Table 8). A
typical example of this comparison is shown in Fig. 9, in which the
BAECV mapped both fires but was more conservative in defining
the burned area extent relative to the reference dataset and the
MTBS mapped fire severity.
radient boosted regression model. NBR2: normalized burn ratio version 2.



Fig. 4. Example Landsat images and Burned Area Essential Climate Variable burn probability images from (A) California, (B) Colorado, (C) Kansas, (D)Wisconsin, and (E) North Carolina.
Areas that were classified as burned are outlined in black.
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3.3. Temporal trends of burned area

The BAECV annual burn classifications show distinct patterns of
burned area and those patterns varied over time (Fig. 10; Fig. 11). For in-
stance, in the 1984–1993 time period, large fires were concentrated in
the northwestern U.S. and many smaller fires were visible in other
parts of the country (Fig. 10a). In the 1994–2003 time period (Fig.
10b), there was an increase in the overall amount of area burned,
especially in the West. This trend continued into the 2004–2013 time
period (Fig. 10c), but there were also a number of large fires that oc-
curred in the Great Plains. Across all three time periods, eastern Kansas
and the southeastern U.S. consistently had a large amount of area
burned (Fig. 11).

Examining the trends in burned area in 10-year time intervals using
the BAECV products, we found that area burned increased by 65% from
190,454 km2 in 1984–1993 to 313,955 km2 in 1994–2003, and then in-
creased again by 37% to 431,649 km2 in 2004–2013 (Table 9; Fig. 11).
Between 1984–1993 and 1994–2003, rates of increase in burned area
were greatest in the West (84%) and the Great Plains (70%) followed
by the East (33%). However, between 1994–2003 and 2004–2013 the
rates of change were greatest in the East (46%), followed by the Great
Plains (44%) and then the West (27%).

For many regions, rates of change in burned area estimated from the
MTBS data were higher than they were from the BAECV data (Table 9;
Fig. 11). Across CONUS, MTBS burned area increased by 73% between
1984–1993 and 1994–2003, and again by 66% between 1994–2003
and 2004–2013. Rates of change in burned area between 1984–1993
and 1994–2003 and between 1994–2003 and 2004–2013, respectively
were 95% and 24% in the West, 96% and 259% in the Great Plains, and
−11% and 141% in the East.

4. Discussion

We designed and implemented the Landsat BAECV algorithm to ex-
tract burned areas from temporally-dense Landsat data across a diverse
range of vegetation types. After implementation, we applied the BAECV
algorithm to all available Landsat data covering the CONUS. To the best
of our knowledge, this is the first time the entire archive of Landsat TM
and ETM+data has been processed for burned areamapping over such
an extensive area. The BAECV products are currently the only moderate
resolution data that characterize burned areas consistently over a long
time period and large spatial extent in the CONUS. The products pro-
duced by the BAECV algorithm are available online at http://dx.doi.
org/10.5066/F73B5X76.

Few algorithms exist that were specifically developed to automati-
cally detect burned areas using large volumes of Landsat data. The
Goodwin and Collett (2014) and the Boschetti et al. (2015) studies
both identified areas of change and then used a series of rules to classify
which regions of change were because of fires. The Boschetti et al.
(2015) algorithm also incorporatedMODIS active fire detections to sep-
arate burned areas from other types of change. Our approach is similar
to the approach taken by Goodwin and Collett in that we both used
lagged-summaries of Landsat data as a reference to measure change
against in addition to a region-growing algorithm; however, our ap-
proach used longer lags and also incorporated a wider range of spectral
indices as predictors. Like the Goodwin and Collett study, we also found

doi:10.5066/F73B5X76
doi:10.5066/F73B5X76


Fig. 5. Example of Landsat time series data and corresponding burn probability images for southern Florida used to generate the annual composite ofmaximumburnprobability (BP-max)
and the burn classification (BC). Images are labeled by year and Julian date.
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that the thermal band was important for identifying burned areas and
had difficulties consistently detecting burned areas in agricultural
lands. The algorithm developed by Boschetti et al. (2015) was applied
to 1 year of Landsat 7 ETM+ data for a subset of WRS2 path/rows
over the western U.S.; areas that are primarily forested. Their approach
is different in that it used a series of rules to classify pixels into spectral
categories, identified pixels that changed spectral categories between
weekly Landsat composites, and applied an additional set of rules to de-
termine which changed pixels were potentially burned. Potentially
burned pixels were then grouped and accepted or rejected as burned
if they were in close proximity to MODIS active fires. Their approach
benefits from using the MODIS active fire detections as an ancillary
data source; however, this limits the applicability of their approach to
time periods when MODIS or other active fire detections are available
(e.g. 2000–present).

Similar to other algorithms (Goodwin and Collett, 2014; Boschetti et
al., 2015), the BAECV algorithm also incorporates a number of spectral
indices to identify burned and unburned areas and is applicable to
both forest and non-forest ecosystems. The motivation behind this
Table 5
Total area burned from the Landsat Burned Area Essential Climate Variable (BAECV) and
the Global Fire Emissions Database (GFED) from 1997 to 2015, and percent difference be-
tween the BAECV and GFED data.

Region Burned area (km2) Percent difference

BAECV GFED

West 286,930 217,652 32%
Great Plains 165,240 171,620 −4%
East 270,717 143,720 88%
CONUS 722,887 532,992 36%
was based on the belief that a combination of spectral indices would
more accurately allow us to identify burned areas than any single spec-
tral index individually. Using the ecoregion, sensor type (TMor ETM+),
spectral indices, their lagged summaries, and change metrics as predic-
tor variables in a GBRM allowed for use of a large number of predictors
without having to establish complicated rules for combining the results
of separate classifiers using individual predictor variables.

The relative importance values of the predictor variables demon-
strated that characterizing land surface conditions in Landsat data
both before and after fires is critical for mapping burned areas. Howev-
er, wewere surprised that the changemetricswere notmore important
than theywere, but perhaps this information is alreadywell captured by
the scene-level and reference predictors. We also examined the partial
dependence plots of a few example predictors. These plots showed
that Landsat bands 5 and 7, and the NBR2 index captured the spectral
responses of burned areas that have beenwell documented inpast stud-
ies (Kasischke and French, 1995; Rogan and Yool, 2001; Trigg and
Flasse, 2000). The partial dependence plots of the 3-year lagged mean
and standard deviation of NBR2 demonstrated that burned pixels
were more likely where the 3-year lagged mean of NBR2 was above
0.2 and less likely as the 3-year lagged standard deviation of NBR2 in-
creased. These responses suggest that the lagged predictor variables
were keying in on pre-fire land surface conditions and filteringwildland
vegetation capable of burning from other land cover types.

Compared to existing data and studies, one advantage of the BAECV
products is that they provide the longest consistent record of burned
area information for the CONUS, 32 years. That record will grow as the
BAECV algorithm is updated to include data from OLI and potentially
other sensors. Furthermore, if automated processes to atmospherically
correct and generate cloud masks were operational for MSS data, our
approach could also be expanded to include another 10 years of fire



Fig. 6.One-quarter degree summaries ofmean annual burned area from1984 to 2013 for the (A) Burned Area Essential Climate Variable (BACV) burn classification product, (B) theGlobal
Fire Emissions Database (GFED), and (C) their difference (BAECV - GFED).
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history (1972–1983). However, the predictor variables we used would
be limited to those that can be derived from the MSS spectral bands.
This has promise as recent studies have improved georeferencing
(Devaraj and Shah, 2014; Kennedy and Cohen, 2003) and automating
cloud masking of MSS data (Braaten et al., 2015), and radiometric cali-
bration (Markham and Helder, 2012); however, processes like these
and a standardized method to atmospherically correct MSS data have
not yet been implemented U.S. Geological Survey's ESPA Landsat data
ordering interface.

4.1. Differences between BAECV, GFED, and MTBS data

Comparison with existing datasets is an important process to help
potential users understand what is novel and unique about the BAECV
data. We did this using the GFED, used globally to monitor patterns
and trends in burned area and emissions, and also the MTBS data,
which are well known by scientists and land managers in the United
States. We found that the burned area mapped by BAECV products
was more similar to the GFED products (1997–2015) than the MTBS
data (1984–2013). However, the spatial patterns of burned area were
different between the BAECV and GFED products. Most notably, GFED
appears to be including more burned area in the Central California Val-
ley, the southern FlintHills, theMississippi Alluvial Plain, and the South-
ern Florida Coastal Plain ecoregions (Fig. 6). Other than the Flint Hills,
these ecoregions are dominated by agriculture and agricultural fires
are common. The BAECV likely missed these burned areas because it is
challenging to identify burned areas with the relatively long revisit in-
tervals of the Landsat sensors and difficulties distinguishing burned
areas from agricultural tillage. Ecoregions where the BAECV products
mapped more burned area than the GFED data included the Columbia
Plateau, the Central and Northern Basin and Range, the northern Flint
Hills and other parts of the Great Plains, and the Southern Coastal
Plain ecoregions (Fig. 6). Some of these differences might be caused by
BAECV commission errors, especially in agricultural lands. However,
these are also ecoregions where fires are common, spread quickly, and
leave little residual heat. Because of this, theymight bemissed by active
fire detection algorithms developed for sensors like MODIS (Hawbaker
et al., 2008). Consequently, we might expect the GFED to
underestimated burned area in these ecoregions and also explain
some of the differences we observed.

In contrast to the differences between the BAECV products and
GFED, the BAECV products documented spatial and temporal patterns



Fig. 7. One-quarter degree summaries of mean annual burned area from 1984 to 2013 for the (A) Burned Area Essential Climate Variable (BACV) burn classification product, (B)
Monitoring Trends in Burn Severity (MTBS) data, and (C) their difference (BAECV – MTBS).

514 T.J. Hawbaker et al. / Remote Sensing of Environment 198 (2017) 504–522
of burned area that are regionally different from existing long-term
burned area information included in theMTBSdata and otherfire occur-
rence datasets that have inconsistent reporting effort over time (Brown
et al., 2002; Short, 2014; Short, 2015). In general, the BAECV and MTBS
data had similar amounts of burned area in the West. However, the
BAECV products included a greater amount of burned area than MTBS
in the Great Plains and the East, both areas where our understanding
of long-term fire patterns is incomplete.
Table 6
Total area burned from the Landsat Burned Area Essential Climate Variable (BAECV) and
the Monitoring Trends in Burn Severity Project (MTBS) from 1984 to 2013, and percent
difference between the BAECV and MTBS data.

Region Burned area (km2) Percent difference

BAECV MTBS

West 369,157 282,611 31%
Great Plains 342,372 83,092 312%
East 224,528 67,432 233%
CONUS 936,057 433,135 116%
Burned areas not included in the MTBS dataset primarily accounted
for the large differences between the MTBS and BAECV products. The
additional burned areas mapped by the BAECV occurred in a range of
land cover types, including forest (Fig. 12a), shrublands (Fig. 12a, d),
and grasslands (Fig. 12c, d), wetlands (Fig. 12b and d), and agriculture
(Fig. 12b). Many of the BAECV burned areas had no corresponding
MTBS perimeter but were near MODIS active fire detections, adding
confidence to our results. However, many other BAECV burned areas
without MTBS perimeters were also distant from MODIS active fire de-
tections. Some of these burned areas had patch shapes suggesting they
were fires. Others hadmore rectilinear shapes following the boundaries
of agricultural fields and/or pastures. Burning in these land cover types
is not uncommon (McCarty et al., 2009), but difficult to determine with
confidencewith Landsat data. Similarly, BAECVburned areaswere occa-
sionallymapped in clear-cut forests, especially in the southeastern US. It
is challenging to determinewhether or not thesewere errors as burning
is sometimes used as a management action after harvest to remove lit-
ter andduff, reduce understory competition, promote seed germination,
and growth (Ryan et al., 2013). In other cases, visual comparison of
the BAECV products with the original Landsat imagery, MODIS active
fires, and federal fire occurrence databases occasionally showed



Table 7
Total area and burned area for the conterminous United States (CONUS) and regions of CONUS from 1984 through 2013, as well as, comparisons in the percentages of burned area found
between the Landsat Burned Area Essential Climate Variable (BAECV) and the Monitoring Trends in Burn Severity (MTBS) products.

Region BAECV burned
area (km2)

MTBS burned
area (km2)

Mapped by BAECV but
not MTBS (km2)

Mapped by BAECV and
MTBS (km2)

Mapped by MTBS but not
BAECV (km2)

Percent of BAECV
not in MTBS

Percent of MTBS
found by BAECV

West 369,157 282,611 164,228 204,929 77,682 44% 73%
Great Plains 342,372 83,092 285,833 57,539 25,552 83% 69%
East 224,528 67,432 195,244 29,284 38,148 87% 43%
CONUS 936,057 433,135 645,305 291,752 141,382 69% 67%
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burned areas that were misclassified by the BAECV algorithm, espe-
cially in areas with drought-induced vegetation senescence or in
scenes with georegistration errors higher than those reported in
their metadata. In these cases, false changes could have triggered
our algorithm. Separating incorrectly identified burned areas from
correctly identified areas in the BAECV data remains challenging in
these areas.
Fig. 8.The amount of area burned from1992 through2013 commonandunique to the Landsat B
(MTBS) data by regions of the conterminous United States. X-axis labels are generalized classe
Even though the BAECV products identifiedmuchmore burned area
across the CONUS than MTBS did, the BAECV products did not map all
burned areas included in the MTBS data. This was especially true in
the East, where the BAECV products missed 57% of the MTBS burned
area. The differences were less pronounced in the Great Plains and the
West, where the BAECV products missed 31% and 27% of the MTBS
burned area, respectively. These omission errors could have been
urnedArea Essential ClimateVariable (BAECV) and theMonitoring Trends inBurn Severity
s from the National Land Cover Database.



Table 8
The percent of Monitoring Trends in Burn Severity (MTBS) fire severity pixels detected by
the Burned Area Essential Climate Variable (BAECV). All MTBS low,moderate and high se-
verity burn pixels were compared to the annual BAECV product over the conterminous
U.S.

Region Severity (%)

Low Moderate High

East 46% 71% 87%
Great Plains 74% 90% 89%
West 78% 88% 85%
CONUS 70% 87% 85%
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caused for a variety of reasons. Cloud cover could have potentially ob-
scured burned areas in regions with rapid post-fire vegetation recovery
(e.g. the Great Plains and the East). Conservative cloudmasks generated
by FMask could have occluded these fires from the BAECV algorithm,
even if the burned areaswere visible in the Landsat images (for example
see the 1988-027 Landsat image in Fig. 5). Additional omission errors
could have been caused by challenges with identifying low-severity
burns, and understory burns that left forest canopies intact. In
these areas, land-surface changes may not have been intense enough
for detection by the BAECV algorithm and may have caused confu-
sion for the MTBS analysts – MTBS may overestimate burned area
as commission error for burned area has been found to be up to
24% (Meddens et al., 2016). This was likely the case in the East,
where we found that the BAECV products had 46% omission error
rates for low-severity burns. Therefore, our classification results
may be improved by refining our training data and visually verifying
Fig. 9. A comparison between the Burned Area Essential Climate Variable (BAECV) (top left),
Landsat reference dataset (bottom left) for evergreen forest in central Idaho (path 41, rows
extent is often more conservative relative to the MTBS data.
that pixels identified as burned by the MTBS data were actually visi-
ble as burned in the Landsat images.

Another reason for the differences between the BAECV and MTBS
data may be related to the MTBS methodology. It prioritizes large fires
(≥2 km2 in the eastern U.S. and ≥4 km2 in the western U.S.) reported
in federal fire occurrence databases. The reported point locations and
dates for those fires are then used to identify pre- and post-fire Landsat
scenes to use for perimeter and burn severity mapping (Eidenshink et
al., 2007). Thus, the MTBS data are most incomplete earliest in the
dataset when federal fire occurrence reporting was most inconsistent
(Brown et al., 2002) and in areaswhere fires are not reported in the fed-
eral fire occurrence databases. This is especially likely for the Great
Plains and the East where there are many fires but little federally
owned land. In addition to reliance on federal fire occurrence databases,
some fires may bemissing from theMTBS data because of the history of
the project; MTBS stopped mapping prescribed fires on non-federal
lands in 2014 because it was not feasible tomap the large number of re-
ported prescribed fires in the Great Plains and the East. Additionally, the
MTBS project started in 2006, before the Landsat archive was open and
free, thus fewer scenes could be purchased and some fires could not be
mapped. Consequently, estimates of rates of change in burned area will
be amplified because of underestimates of burned area in the early years
(pre-2004) of the MTBS dataset.

4.2. Validation of the BAECV products

Completing a thorough validation of the BAECV products was be-
yond the scope of this study and not practical because the MTBS data
the Monitoring Trends in Burn Severity (MTBS) mapped fire severity (top right), and the
28 and 29, Julian day 273, 1988). This example is typical in that the BAECV burn area



Fig. 10. Burned areas for (A) 1984–1993, (B) 1994–2003, and (C) 2004–2013 from the Landsat Burned Area Essential Climate Variable.
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are known to be incomplete. However, validation is essential to help po-
tential users assesswhether or not productswillmeet their requirements
for use and how to interpret findings based on them (Morisette et al.,
2006). Instead, we devoted an entire companion paper to validation of
the BAECV products (Vanderhoof et al., 2017). The methods used in this
validation effort largely follow the guidelines established by the Commit-
tee on Earth Observation Satellites (CEOS), Land Product Validation Sub-
group (LPVS) and followed by the fire_cci project under the European
Space Agency's (ESA) Climate Change Initiative (CCI) (Padilla et al.,
2015). However, the approach taken by Vanderhoof et al. is unique in
that 3 image analysts each independently derived validation data from
Landsat imagery in 28 path/rows for five years (1988, 1993, 1998, 2003,
and 2008). They analyzed their results using regions similar to those
used in this study (East, Great Plains, and West), but subdivided the
West into the Arid West and Mountain West. They found that omission
and commission error rates were balanced when reference data from 2
analysts were used. Overall accuracy for burned areas in the BAECV prod-
ucts was found to be very high; 99.9% for CONUS, the East, Great Plains,
and Arid West, and dropped to 99.8% for the Mountain West. Omission
and commission error rates were more variable. Omission rates ranged
from 31% in the Arid West, 41% in the Mountain West, 62% in the Great
Plains, 67% in the East, and 43% across CONUS. Commission rates ranged
from 24% in the Arid West, 32% in the Mountain West, 57% in the Great
Plains, 47% in the East, and 34% across CONUS. These error rates are larger
than those in previous studies using individual scenes or with limited
spatial extent (e.g., Bastarrika et al., 2011; Chuvieco et al., 2002;
Goodwin and Collett, 2014; Koutsias, 2003; Stroppiana et al., 2012), but
lower than those documented for global coarse-resolution products
(Padilla et al., 2015). The BAECV error rates are similar to those produced
by VCT and LandTrendr, which are constrained to forested cover types
(Thomas et al., 2011; Kennedy et al., 2015).

4.3. Potential applications and use of the BAECV products

There is a wide range of potential applications for the BAECV prod-
ucts. Although an independent accuracy assessment of the BAECV



Fig. 11.Area burned by region and year asmeasured by the Landsat BurnedArea Essential Climate Variable (BAECV) and theMonitoring Trends in Burn Severity Project (MTBS) from1984
through 2015. MTBS data were not available for 2014 and 2015.
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products has been completed (Vanderhoof et al., 2017), users should as-
sess the data to determine if they are appropriate and have acceptable
accuracy levels for their needs. For analyses covering large spatial and
temporal extents, we recommend using the data as they are, as errors
of omission and commission for burned areas are approximately bal-
anced across the CONUS (Vanderhoof et al., 2017), but potentially
Table 9
Area burned by region and decade-long time periods as measured by the Landsat Burned Are
(MTBS) from 1984 through 2013. Percentages indicate change relative to the previous time pe

Region ECV burned area (km2)

1984–1993 1994–2003 2004–2013

West 71,354 131,168 84% 166,635 27%
Great Plains 66,419 112,933 70% 163,020 44%
East 52,680 69,855 33% 101,993 46%
CONUS 190,454 313,955 65% 431,649 37%
masking burned areas in agricultural lands, since this land cover type
has been shown to experience the highest rates of error, relative to
other land cover types (Vanderhoof et al., 2017). The BAECV certainly
detects burned areas in agricultural lands, but not consistently because
of Landsat's 16-day revisit interval and the large amount of variability in
vegetation and soil condition in agricultural lands. For smaller-scale
a Essential Climate Variable (BAECV) and the Monitoring Trends in Burn Severity Project
riod.

MTBS burned area (km2)

1984–1993 1994–2003 2004–2013

52,536 102,669 95% 127,406.5 24%
8305 16,292 96% 58,493.8 259%
16,643 14,872 −11% 35,916.2 141%
77,484 133,833 73% 221,817 66%



Fig. 12. Examples of burned areas mapped by the Burned Area Essential Climate Variable (BAECV) algorithm, Monitoring Trends in Burn Severity (MTBS) project, and the Moderate
Resolution Imaging Spectroradiometer (MODIS) for select areas in the conterminous United States.
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analyses, we would advise users to visually inspect the burned areas
mapped by the BAECV algorithm, compare them to Landsat or other im-
agery, and manually edit as needed.

In addition to the long time series provided by the BAECV products,
their moderate spatial resolution (30m) alsomakes them amenable for
ecological studies. Few other burned area products exist at this resolu-
tion, except for the MTBS data which are known to be incomplete.
Coarse-resolution burned area data derived fromMODIS or VIIRS imag-
ery do not offer the detail required for on-the-ground ecological appli-
cations (Kennedy et al., 2014). Having finer resolution data on burned
areas will also facilitate spatial analysis assessing how fire occurrence
varies among land cover and vegetation types and quantifying fire im-
pacts like emissionsmodeling. These types of analysis have been limited
because coarse-resolution burned area data lack small fires (Randerson
et al., 2012) and make it difficult to assess exactly what was burning in
highly heterogeneous landscapes (Eva and Lambin, 2000). The moder-
ate spatial resolution of the BAECV products should facilitate investiga-
tions relating patterns of burning to othermoderate-resolution data, for
instance land cover or biomass consumption.

We designed our algorithm to be flexible enough to be applied to
other parts of the world beyond the U.S. However, the availability of
Landsat images will limit the temporal span of our results. In many
places of the world, image availability is best after Landsat ETM+ be-
came operational in 1999 and collection of both TM and ETM+ images
was more systematic (Kovalskyy and Roy, 2013). For time periods be-
fore 1999, the reference and change metrics we derive from historic
Landsat imagery will need to be reassessed and the lag times over
which they are calculated may need to be increased to ensure enough
images are incorporated to capture the range of variability in pre-fire
surface conditions. Given data availability limitations, the BAECV algo-
rithm could potentially be adjusted to rely more on scene-level predic-
tors than on reference and change predictors. The importance of the
scene-level band values for our algorithm (Fig. 2) indicates that this
may be possible, but we would anticipate higher commission rates
without variables representing pre-fire conditions and change from
pre-fire conditions. Resulting BAECV products prior to 1999 might re-
quire review prior to use in analyses to remove or reduce commission
errors. An additional limitation to overcome would be the availability
of training and validation data. Few areas outside of the U.S. have data
that represent heterogeneitywithin fire perimeterswith the level of de-
tail that theMTBS data provide. Because the BAECV algorithm requires a
large sample of burned and unburned locations towork effectively, new
datawould need to be collected before training and applying the BAECV
algorithm elsewhere. However, that constraint limits wide-spread ap-
plication of almost all change-detection and burned areamapping algo-
rithms as well.

5. Conclusion

We developed and implemented the Landsat BAECV algorithm to
identify burned areas in temporally-dense time series of Landsat images
for the CONUS and to contribute USGS's efforts to produce application-
ready Landsat science products and to GCOS efforts to produce global
burned area ECVs. The data products produced by the BAECV algorithm
document patterns of fire occurrence that are not well characterized by
existing fire datasets in the U.S. and our approach can be extended to
other regions of the world with some extra effort. These data could help
to better understand past patterns of fire occurrence, the drivers that cre-
ated them, and the impacts fires have on natural and human systems.

Data and resources

BAECV outputs including annual mosaics for the CONUS of maxi-
mum burn probability and burn classification are available at http://
dx.doi.org/10.5066/F73B5X76.We encourage interested users to down-
load and evaluate the BAECV outputs and to contact us at BAECV@usgs.
gov with suggestions and feedback.

doi:10.5066/F73B5X76
doi:10.5066/F73B5X76
mailto:BAECV@usgs.gov
mailto:BAECV@usgs.gov
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